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1. INTRODUCTION AND SUMMARY

In this paper we attempt to give a constructive, affirma-

tive answer to each of the following questions.

1. Given a function f and an interval I. is it poss-

ible to tell a priori whether or not one can accurately

approximate f via a low degree rational function?

2. Can such a rational function be easily constructed

explicitly, so that one encounters no poles on the interval

of approximation?

3. Can one use the Thiele algorithm to construct or

evaluate this rational function?

4. Can one tel. a priori, when we can expect the Thiele

algorithm, the c-algorithm, or the Pade method to produce an

accurate low degree rational approximation?

5. Does the error of this rational function compare

favorably with the error of the best possible rational approx-

imation of the same degree?

Although we cannot give an affirmative answer to the

above questions in all cases, we shall describe classes of

analytic functions which house nearly all of the cases en-

countered by the author in applications, and for which the

answer to each of the above questions is "Yes".

We shall develop a class of rational approximations for
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interpolation over [-1,1], [O,oo] and [-co,co]. These rational
I

approximations share many of the features of the sinc methods

summarized in 117]. The interpolation points of these ra-

tionals are the same as the sinc points and the classes of

functions which low degree rationals approximate accurately

are the same as the classes which the sinc functions approxi-

mate accurately. Indeed the error bounds for e.g. approximation

on [-1,1] of functions analytic on the unit disc are the

same as the sinc bounds, i.e. rationals have the same opti-

mality properties as sinc methods. In using rationals instead

of sinc functions, we lose many of the simple relations that

sinc functions satisfy, such as orthogonality and ease of

getting other formulas such as quadrature, approximation of

derivatives, methods of solving differential equations, etc.

However, the well-known rational function algorithms of

Thiele [21] (the p-algorithm). Pade [12] ,and Shanks [15], Wynn [23] (the

c-algorithm ) all share simple methods of prediction, which

the sinc functions do not appear to possess. This paper

provides an understanding in that it enables us to tell a-

priori, when we can expect these algorithms to work effectively.

The spaces of functions for which the rationals provide

accurate approximations are described precisely in Sec. 2 of

the paper. One such space, consists, roughtly of functions

analytic on an interval with possible singularities at end-

'41
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points of an interval, such that the functions are of class

Lip a(a > 0) on the interval, i.e., functions which one encoun-

ters in nearly all cases in applications.

The rational approximations of this paper have the

following additional features.

(a) There are no poles on the interval of approximation.

(b) The rational functions are linear in f, the func-

tion that is being approximated.

(c) They are nearly optimal. More precisely, we prove

the following result:

THEOREM 1.1: Let 1 < p < oo, let p' = p/(p-l), let U denote

the unit disc in the complex plane, let g be in the Hardy

space H (U), and let f(z) = (I - z 2)g(z). Let P denote the
p n

space of polynomials of decree n and set

(1.1) 6N = inf sup sup If(x)- Ij ~ ~ ~ ~ ~ ~ x epgH() =1"<~ w
P2N+2 ' 0"P2N+l gEP (U) , -p l<x<li

Then there exist positive constants CI,C 2 and N0 depending

only on p such that for all N > NO,

(1.2) CN-1 exp-r( ,2N)1/
2 ]  1 N c N I/( 2 p')exp 1(L)l/2

)
"

p N22

The rational functions of this paper are of the form 4/c

in (1.1) and they approximate f on [-1,1] to within an error

I ° .i



4

bounded by the right hand side of (1.2).

A typical approximation result of the present paper is

the following:

THEOREM 1.2: Let f and g satisfy the conditions of Thin.

1.1, and define z. and B(z) by

(1 .3 ) z . = -. , B (z ) = (l- z 2 ) N "p

q3+l j=-N -z z

If q is selected by the formula

(1.4) q = 1/2

Then, for all integers N > 0,

N f(z )B(z)
(1.5) max Jf(x) - j=-N (z-zj)B (zj)I

1(2p') eN[ 1/2 ]

C 2 N x TT(P

where C2 depends only on p.

Due to their simplicity of construction and approximation

properties, the rational function approximations of this paper

play a (A, role as the interpolation polynomials obtained

by interpolation at the zeros of the Chebyshev polynomials

play for polynomial approximation. In order to describe this

role effectively, we return first to the case of Fourier series.

Let R > 1, and let A denote the annular region in the

R
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complex plane C, AR = (w e C: R < lwl < R), let F be

analytic in AR, and let C. be determined from

1 2N iek -iJek
1 2N Gk lik 2kirc Ek F(e )e(1.6) k= k 2N+I"

Then

ie N ije -N).

(1.7) max IF(e) - Zj=-N c O(R

The bound on the right hand side is essentially best possible

with regards to order, in that the number R cannot be

replaced by a larger positive number regardless of how the

c. are chosen.J

In (1.7) we now consider only those functions F for

which F(z) = F(l/z). Then we obtain a cosine polynomial appro-

ximation. The mapping

1 1(1.8) z= +w

transforms the annulus A onto the ellipse ER with foci at

z = +1 and sum of semi-axes equal to R. Conversely, if

f(z) is analytic and uniformly bounded in ER then we can use

(1.8) to get a new function F(w) analytic in AR with Fourier

series expansion Zk cei and where ck = ck .

TN (x) = cos NS, where x = cos e. and = cos[(2k-l)N], then

N2
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(1.9) max f(x) : ± (X) TN:(x

-lxlk=l (x-xk)T(xk)

where once again, the R in the O(R -  bound on the right

hand side cannot be replaced by a larger number, regardless

of how a polynomial of degree N-1 is chosen to approximate

f on [-1,1].

Hence, instead of finding the polynomial which best

approximates f on [-1,1], it is much easier to use the

Chebyshev polynomial for which the interpolation points xk

are known explicitly to get an approximation which is nearly

as good. The rational functions of this paper share this

feature.

Notice that for the case of polynomial approximation

above, we required a knowledge of a region of analyticity of

f, a property which we can usually determine a priori in

applications. Once we have identified such an ellipse ER

(resp. an annulus A ) we can be certain that polynomial (rsp.
R

Fourier polynomial) approximation will work very well on

[-1,1] (rsp. on [0,2r,]). From the point of view of approxi-

mation in applications, we can thus identify functions

analytic in ER (rsp. AR with polynomials (rsp. Fourier

polynomials) since they can be very accurately approximated

with polynomials (rsp. Fourier polynomials) of low degree. P4

Unfortunately there is a drastic change in the rate of



. . .. . . .~. - -. , . . . - . - - . - .. ..-. .

7

convergence of polynomial approximation in the case when

the function to be approximated has a singularity on the

interval of approximation, a situation often encountered in

applications. For example, if 0 < a < 1, we have

(1.10) max I(l-x2)- pN(x)

where pN(x) is any polynomial of degree N in x and C

is a constant independent of N. If a = 1/4 we would have

to take N > 106 to get 3 places of accuracy.

While for practical purposes functions with singularities

on the interval of approximation cannot be identified with

polynomials, there is, nevertheless, a class of functions

with singularities on the interval of approximation which we

describe in this paper, and which lends itself to accurate

rational approximation. Such a class includes the functions

which we can accurately approximate with polynomials and

for practical purposes, we can identify this class with

rational functions. For example, by Theorem 1.2 above,

given an integer N > 0 rational function p2 (x)/q2 (x)

with pN+Iof degree N+l in x and qN of degree N in x,

such that

2)a P2N+2(x) a/2 aN)/2(1.x 11 q2N+1(x)< C N 2exp(-(T 2
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We remark that by identifying classes of functions

which can be approximated accurately by rational functions,

we are identifying classes of functions for which we can

expect the Pade method, the Thiele algorithm or the EpS/-

lon algorithm work well. We shall later in this paper

illustrate this. For example, we would be able to tell a

priori, that the Pade method used in [2] may be expected to

be accurate.

Another practically important use of rational functions

is in analytic continuation. For sake of illustration, let

us momentarily return to the class of functions analytic

and bounded in the ellipse ER described above. Let us assume

that f is known on [-1, 1], and that we want to evaluate f
1 1 1

at the point 1 + 1(R + 1) in the ellipse. This can be done

by means of the polynomial in (1.9), the rate of convergence

N
of the error zero being O(p ), where

= [(a+l)/2 + a+(a2-3)/4]/R, a = (R + R- 1 )/2. On the

other hand, if ?N(x) is any polynomial approximation to

2  1f(x) = C + (l-x ) on [-2, ] and we want to approximate

f(l) = c by evaluating pN(1), then we may expect [f(l)-PN(1) ]

to converge to zero very slowly, indeed, too slowly to be

of any practical use. Since however, we may identify

f(x) = c + (l-x 2 )a with a rational function for practical

purposes, we can accurately evaluate f(l) via a rational
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r, 1 1
function, by using values of x on [-2, ] only.

As a more sophisticated example, let u = u(x,y) be

harmonic in the right-half plane, and assume that u(O ,y)

is of class Lip (a > 0) on a neighborhood of y = 0. It

follows, then, that u(x,0) is analytic and bounded on a

sector with vertex at the origin and of class Lip on [0,A]

where A > 1 is arbitrary. That is, for practical purposes,

we may identify u(x,0) with a rational function, and we

can accurately approximate u(0,0) via a low degree rational

function, by using values of u(x,0) on (e.g.) the interval

[l,A].

In the cases when the condition of accurate approxima-

tion are satisfied, it is thus possible to do accurate analy-

tic continuation all the way to the boundary of analyticity,

via a relatively low degree rational function.

The Lip property of the function to be approximated

is important from the point of view of applications; if f

approaches zero too slowly in a neighborhood of a singularity,

then it is necessary to choose the degree of the rational

function to be very large, in order to achieve a desired

accuracy. For example, for rational approximation on [0,1],

if f(x) - f(l) - c/[log(l-x) as x - I then it is just

as difficult to approximate f on [0,11 by a rational

2)funLi n it is to approximate (1-x )on [-1,.1] by a
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polynomial. We remark however, that this difficulty can

often be remedied by means of a transformation. For example,
-1 -1

if we set x = 1-exp(-z-), we get f(l-exp(-z )) - f()

cz , z - 0, and we can now approximate the new function of

z defined as the interval [0,w] by a rational function.

We mention that a rational function was previously

constructed by the author [18) of the same degree as that in

(1.5) for approximating f on [-1,1], and moreover the error

bound in [18] is the same as that on the right hand side

of (1.5). However, whereas the interpolation points in [18]

are the points

(1.12) j k I / 2 sn[(2j-l)K/(2N);k]

the evaluation of the j is more difficult than the evaluation

of the z. in (1.3).J

The same points z. defined in (1.3) were also used by

Peaceman and Rachford [13] to approximate the points j in
J L

(1.12) in their alternating direction iterative method for

obtaining approximate solutions to elliptic partial differ-

ential equations.

For many problems of rational approximation one does

not have analyticity in the unit disc U, but rather in a

1
smaller region Psd (see Figure 2.1 in Sec. 2) and we have

therefore also considered this case. Although our error



bounds in this case are not as small as the sinc bounds, we

suspect that the rationals of this paper are as accurate as

the sinc approximations for the same problem, and that it

may be possible to improve the bounds of this paper in the

case when 0 < d < r/2.

Notice that if N is replaced by 4N in the rational

function in (1.5 ) then every second interpolation point in

the "4N" rational case is the same as the interpolation point

in the "N" rational case, and the "4N" rational approximation

has roughly twice as many correct significant figures as the

"N" rational approximation. This result is of practical

value, particularly when a user is unable to determine a

region Zd (Figure 2.1).

Let us now briefly describe the layout of the paper.

In Sec. 2 we give precise statements and proofs of the

results (a), (b), (c) and (d) stated at the beginning of this

section. These proofs would ordinarily be lengthy, and for

this reason some of the details are carried out in appendix

A and B.

In Sec. 3 we illustrate connections of the results with

the well-known approximation algorithms, the Thiele. or

p-algorithm, the Epsilon algorithm (e-algorithm) and the

Pade method. In view of the results of Sec. 2. we are able

to determine a priori, when we can expect these algorithms

6 4
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to work.

In Sec. 4, we prove Theorem 1.1 above. While the exact

optimal rate of convergence of rational approximation is not

known, we conjecture that, in the notation of (1.1),

1

(1.13) in- sup sup Ijf(x) - (x)1( '/U e

c N ,EP N gEH p(U) IgIp =1 -l<x<l

as N .

In Appendix A we study bounds on rational functions

related to (1.. The Jacobi theta functions turn out to be

most convenient for this purpose, since, while it is possible

to obtain similar results via the approximate integration

-l
of the function F(z-t) = t logl (z+t)/(z-t)l over 0 i t o

via the trapezoidal (resp. midordinate) rule evaluated at the

points qJ (rsp. qj-/ 2 ), j = 0,+l,+2,..., and using the

concavity of this function for (fixed z6(0,m)) as a function

of t, it is possible to achieve more accurate error bounds

via the theta functions since it is possible to get exact

bounds via known properties of the theta functions. However,

while we use elliptic functions to obtain our results, the

final results are independent of elliptic functions.

In Appendix B we obtain accurate bounds on contour

integrals encountered in the proofs in Sec. 2.

We close this section with a few historical remarks.
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Stietjes [20] seems to be the first to identify classes of

function which may be approximated via truncated forms of

continued fractions. These functions are expressible in

the form

(1.14) F(z) = [b
t-z

a

and the continued fraction expression obtainable via this

representation converges uniformly in any closed region of

the complex plane which does not contain the interval [a,b]

(see (7]). Unfortunately given a function F it is not

possible to easily check in applications whether or not F

has a representation of the form (1.14).

In [6] Gautschi gives an excellent summary of the use

of rational functions in numerical analysis. It has long

been suspected and verified in ad hoc cases that a rational

function can do a better job of approximation in a neighbor-

hood of a singularity than a polynomial. The first quantita-

tive result as to exactly how much better a rational function

can be than a polynomial was obtained by Newman [10,11].

Renewed interest has developed in rational functions since

Newman's result. The error of the rational functions of this
1cn1/2

paper have the 0(e ) rate of convergence which was

obtained first by Newman. Saff and Vargr. (see [14,22]) have
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obtained many beautiful results demonstrating the superior

power of rational functions. Also of interest is the idea of

Gabielius [5], for using the Greens function of a region of

analyticity to obtain rational approximations; indeed the

rational functions of this paper have this property. For

the case of rational approximation on a finite or semi-

infinite interval, the poles of the rational functions of

this paper lie on the real line outside of the interval as is

the case for best approximation of Stietjes transforms--see

Borwein [3].
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2. RATIONAL APPROXIMATION WITH ERROR BOUNDS

This section contains the main approximation theorem

of the paper. While the proofs are complete, we use results

derived in the appendix in order to shorten these proofs.

At the outset we cover in detail, the case of rational

approximation on the interval [-1,1]. These results are

then extended to the case of rational approximation with a

rational function of a variable over a contour P,

where is a one-one transformation of P onto the interval

[-1,1]. We then use this generalized result to obtain two

types of rational approximations over the interval [O,w] and

one over [-CO].

Rational approximation on the interval [-1,1] is effect-

ive when applied to a certain class of functions that is

analytic in the region

(2.1) = e C: arg ±4 < d}, 0 < d ,
0d

where 0 denotes the complex plane. In the case when

d = r./2, !t Iis the unit disc. When 0 < d < T./2, I is the

intersection of the two discs

(2.2) U = C: C: + i cot dl < lcc dl!
1,2

while if T,/2 d < -.T, ~d is the union of the two
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r

d

Fig. 2. 1. The Region of Eq. (2.1).
d

2
Fig. 2.2. The Region Td of Eq. (2.3).

dd
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discs (2.2). We shall obtain rational approximations for

1functions analytic in Z and also for functions analytic on

the regions.

2I
(2.3) fz e p: jarg zi < d),

(2.4) = (z e C: jarg sinh zi < d),

dI

(2.5) 4= (z e C: Irn zI < d).

These regions are illustrated in Figs. 2.1-2.4.

2.1 Rational Approximation on [-1,1].

We describe two typical situations of rational approxi-

mation on the interval [-1,1]. The conditions in the first

case are of theoretical interest, particularly when d is

the unit disc, while the conditions in the second case can

be readily tested in applications.

1Given f analytic in zd' we define F by

(2.6) F(C)

Assumption 2. la: Let f be analytic in 21 1 e -e

defined by (2.6), and for some p in the range 1 < p < , let

(2.7) !IFIp im_( 2  ,F(C),PldCI)I/P' < .

.8-
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Let a be either 0 or -,let 0 <q <1, let r. be defined ~

(2 .8 ) c = q -~

and correspondiny to a positive integer N, let B(C) be

defined by

N Cc
(2.9) B (C) = 1 1c;

'j=-N2a IC iJ

Theorem 2.1a: Let Assumption 2.1a be satisfied, let

0 <d _ /2, and define by

(1g2
(2.10) =f(g) - Ej-+a(-.)l~B(.

J J J2

where B(C) is defined in (2.9). If q is selected 12y the

formula

(2.11) q ex(rr2

where p' =p/(p..j), then there exists a constant C depending

only on p, such that for -1 1.

(2.12)p p*

* Proof: It is readily seen that Tl(5) in (2.10) also has

the representation

(2.13) T()= 2 TTi J12

)BC
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-1

Now, by Thin. A.10 (i), the function IB(C)I satisfies the

inequality

(2-d) + C (d,q)

(2.14) max IB( )I expf 1
d q

where, by (A.36), we have, for 0 < d r/2,

2
(2.15) 1<  1 --- )  

Y

log log log - 2edq q q

Hence, setting

(2.16) A = exp(d e - ),

taking absolute values of each term in (2.13) and using (2.6),

we get

2 ~T ,.(-d)
(2.17) )IB( )IA exp( 1 1d 1 F(I)doj

2  log - a

q Zd

(2.18) A(1-g 2 ) B( ) Iexpt 2  1 )[G(p'd ,)]P'1IFjI
log-"

q

where (2.18) is obtained after applying Holder's inequality

to the integral on the right hand side of (2.17) and then

using the notation of Eq. (B.18) of Appendix B. By

applying Thin. B.1 to bound G(p',d,g), we therefore get

(2.19) ( A 2 1/p' (sin d) (P/-p)/(2P')[ ,(,1/P' 'IF:!

2 2
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(2.19 cont.) / (-d)• (- ) BQ) ex 1 )
log -

q

We shall now attempt to obtain a uniform bound on

2 p
(i- 2 ) p IB(§)I. To this end, let us select a number

such that

11l2-a
(2.20) 0 < qN+i l i 1

and let us define I( l) by

(2.21) I = X X X --

Then, by Thin. (A.10)!p

(2.22) max IB(g)I b(N,q,gl)
FeI (g 1 )

where

- 2

(2.23) b(N,q,gl) = 2 expf- I (1-qN/g
2 log -

q

Since IB(g)l 1 on [-!,I], we have

2b(N,q,fl) if I(Ml)2 ip
(2.24 ) (- 7 ) / IB (9)1 4 1 1 /p,

- 2 if [ I ] I(. )

We now define q by (2.11), i by

(2.25) N q
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to get (2.12), in which we may take C to be

1 11
(2.26) C = 2 3/p (sin d) 2p' F(W-1) iP exp ([ (2ed) -+(2p') 2])

Remark (i): If d = r/2, the result (2.12) remains the same,

except that the constant C may be taken to be

(2.27) C = exp[T(2p'

Remark (ii): From (2.12), the dominant rate of convergence

of the error to zero as N - is

(2.28) rI = exp(-d( )1/2).

The corresponding rate for sinc approximation is

(2.29) r 2 = exp[-( N) 1/2

This rate r2 converges to zero more rapidly than rI if

0 < d < r/2, and r 2 = r I if d = r/2. The author originally

expected these rates to be the same for all d in the range

0 < d .& r/2, but we have so far been unable to obtain the

sharper bound of (2.29).

Remark (iii): It would be interesting to extend Thin. 2. 1a

to the case T/2 < d _ T. Thm. A. 10 applies to this case;
4

it shows moreover that we must more carefully bound the

I
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contour integral (2.13), taking advantage of the fact that

-l
whereas IB(C)I is close to 1 in neighborhoods of = +1,

T (1/2 -d) on t e prf a 1 ou s d
it is close to 2 exp( /q on the part of 1

log l/q ~dousd

of the neighborhoods of +i. We have not done this, due to

the added complexity of the proofs. However, such an

approach may also lead to an improvement of the bound (2.12)

for the case when 0 < d < V/2.

Remark (iv): The Assumption 2.la is not satisfied if f(r)

does not approach zero as + ±1. However, if g is

analytic and bounded in Zd and is of class Lip ( d )

where Z denotes the closure of Zd' then f defined by
dd

(2.30) f(F)= g1) - 2• -2 g  2 g

satisfies Assumption 2.1a, for p < 1/(1-a). After obtaining

a rational approximation for f we add the linear term

1 1
-(1-1)g(-l) + -(l+e)g(l) to get a rational approximation

2 2

for g.

Rather than testing whether or not Assumption 2.la is

satisfied, it is often simpler in practice to check whether

or not the following assumption is satisfied. All of the

above remarks, albeit after some obvious modifications, apply

also to this case.

Assumption 2. 1b: Let f be analytic in Zd and let
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(2.31) If(C)l - cj(l+ )c (1-C) I

for all in Z where c, a and 5 are positive numbers,

and 0 < a < 1, 0 < B < 1.

Theorem 2. lb: Let AssumPtign 2.1b be satisfi, and lt

0 < d , r/2. Let y = min(a,5), 8 = max(a,5), and correspond-

ing to_ A positive inteQer n, let q b define yk

-1/2(2.32) q = exp(-Tr(2yn)

if y , let M and N be defined by

M= n
(2.33)

N =[2n

while if y = , let M and N be defined by

M 1n]

(2.34)

N= n.

Let C, be defined by (2.8), and let B(C) and T(g) be defined by

4 (2.35) B(C) = -M1
j=-M+2a -C

and

'4
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= - N (1-x 2B~f(.
(2.36) E() f~

j=-M+2a (_j1C2)B(j

Then there exists a constant C depending only on c, ~

3 and d, such that for all in [-1,1],

(2.37) I1)I C n~" expf-d(2yn)1 ~}

Proof: The identity (2.13) now also defines the n()of

(2.36), provided that B(C) is defined by (2.35). Taking

absolute values, replacing If(C)I by the right hand side of

(2.31), and using (2. 14)-(2.16), we get

TT (-d)
(2.38) 11(g)I Ac(l-1 2 )IB( )IH(a5d~g)exp( 2

logq

where H(a,B,d,g) is defined by Eq. (B.19) of Appendix B.

Using the result of Thin. B.2, we now get

(2.39) IT~) cC(+ 1~ B(F) Iexp( 1

logq

where the constant C 1 depends only on a~, 3 and d.

We now proceed to obtain a uniform bound on

* (l~) (-~)fB( )I. To this end let E and be selected

such that

M+1/2-a
< q<

(2.40)

N+1/2-a
< q ,<1

S2
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and define I(EiF 2) by

l-.
(2.41) I(Fl, e2) = - i-

Then, by Thm. A.10,

(2.42) max jB(gfl b(M,N,lF
212

where

2 M N
(2.43) b(M,NEl~ 2 ) _exp- --- 1 - - - ----.

2 log 2gI 2 2
q

We therefore have, since IB(x)l 1 if -1 x 1,

22a+ al if -1 +

(2.44) (l+) a b(M, Nl, 2 ) if C E I(§l,121

a +213 5 -2"i
2 E if l.2

Now q is given by (2.32) and we consider first the case

when y = = min(a,O). In this case M = n, N = [an/5]. If

M 1/2
we furthermore select E and 2 by the formulas q M

Nlt2
= q N /2, then we get the uniform bound (2.37).b2 ,•

The argument in the case when y = is similar, and we

omit it.
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2.2 Rational Approximation on a Contour.

Let Z be a simply connected domain with boundary

, let a and b (b M a) belong to a, and let C be

a conformal map of Z onto the region Zd (Eq. (2.1)) such
-l

that cp(a) = -1, c(b) = 1. Let = denote the inverse

map, and define F by

(2.45) r =[t(C): -1 li.

Let z. denote the point

]2
(2.46) z. = (C )J J .

where the Cj are defined as in (2.8). Let f coe analytic

in Z and define 7 by

(2.47) 1;(z) = f(z)
i-CP (z) 2

Let a(z) be defined by

(2.48) 8(z) = j=-M+20 l- j O (z)

where a is defined as in (2.8).

Let one of the following two assumptions be satisfied:

Assumption 2.2a: Let 5 be defined by (2.47), and for some

p > 1, let

4
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(2.49) rlim inf ( -  C pi(z)jPl '(z)jjdzj) I /p < 0.
QC-a 2 U C

Assumption 2.2b: Let f be analytic in Z, and for all

z e 2, let

(2.50) if(z) < Al1-(p (z)l l+cp(z)

where A, a and 5 are numbers such that A > 0, 0 < a < 1,

0<5<1.

Proceeding as in the previous section, we set

(2.51) (x) [l-(x) 2 (x) f(z)M'(z)dzBT [CP(Z) -CP(Z)] [I-CD(Z)2] (Z),X € F

to get

2
N [l-(X)2] (x)CP'(Z)

(2.52) I(x) = f(x) E j-M+2a 2
[CO(W)-Cj [lH-Cj] i%(zj

The sum on the right hand side is a rational function in

the variable W(x).

Theorem 2.2a: Let Assumption 2.2a be satisfied, let 0 < d ,/2,

let M = N in (2.48) and (2.52), and let r be defined by

(2.47). If q is defined by

(2.53) q = 2N

where p' = p/(p-l), then there exists a constant C
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dependiny only on p such that for all x o_n

12' .2N) 1/2

(2.54) (x)W CN/ 2 p exp(-d( pl/1 p.

Proof: If we set cp(z) = in (2.51), we get (2.7) with

9()= F(z); if we set 3( ) = x and c(z) = in (2.51)

we get (2.13). Hence the proof is identical to the proof of

Thm. 2.1a.

The proof of the following theorem is also similar to

the proof of Thm. 2.1b, in view of the above remarks.

Theorem 2.2b: Let Assumption 2.2b be satisfied, and let

0 < d , r/2. Let y = min(a,5). 8 = max(a,5), and correspond-

ing to a positive integer n, let q be defined by

(2.55) q = expt-Tr(2yn) 1 /2).

If y = a, let M and N be defined by

M= n
(2.56)

N = [ n]

while if y = 6, let M and N be defined by

M = n]

(2.57)
N= n.
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Let j be defined byl (2.8), zj by (2.46), r by (2.45) and

1(z) and I(X) by

N (z)-¢,.
(2.58) %(z) =

j=-M+2a l-CcP(z)

and
21-CP Wx2 I zxWf (z) ' (zj

(2.59) I(x) = f(x) - z
j-M+2ay [p(x)-_j] (1-Cj)m& (zj)

Then there exists a constant C depending only on a and S

such that for all x e r,

(2.60) fl(x)I C n 8/2 exp(-d(2yn) 1/2.

2.3 Rational Approximation on [0,w]; the Non-oscillatory Case.

In this case, the region Z of analyticity is the

sector of Eq. (2.3). The function and the inverse

function of the previous section are

=z-I

(2.61) z = Z(1) i _" I- z+l"

Hence corresponding to the points r. in (2.8), the points z

are

(2.62) z. - qJ- (a = 0 or 1/2).
J

Thus the product (2.48) becomes

(2.63) (Z) = N 2 -•

J-M+2az+qa
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2
Corresponding to f analytic in Zd the function in (2.47)

is now defined by

(2.64) I(z) zl+ z)• ~4z fz

the condition (2.49) thus becomes

t ip Idzl 1/p

(2.65) lim ( p (z) )1p < < p,<
2TT ' 2 12 1 pl+z ,

where 2()=z : a r z - ) "<

)= ZC C: arg(z-r) < d), while the condition

(2.50) becomes

(2.66) If(z) A<l+zI Izi .

The error q, i.e., the difference between f and the

rational function thus becomes

(l+qj- 9f(z)(2.67) 1(x) f(x) - j=-(+qJ iz'1 + x j=-M+2 q-j (x-zj (z.)

2

It thus follows that if f is analytic in d' and

(2.65) is satisfied we take M = N in (2.63) and (2.67),

and choose q as in (2.53) to bound I on (0,m] according

to (2.54). If f is analytic in Zd and (2.66) is satisfied,
Id

then by choosing q as in (2.55), we bound ' on [0,ol

according to (2.60).
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2.4 Rational Approximation on [O,cii; the oscillatory Case.

In this case the region Z of analyticity is the region

3
zdof Eq. (2.4). The mapping functions Cp and are

defined by

sinh z -11 + sinh1 'C
(2.6) ~() = inh z - 1' ()= - ih(~

We68 see) thzfr rm(.3 ha )tkstefr

Nh sin + 1

(2.69) V(z) N j-M2 sinh z - qi-

i.e., the points z. are given by

(2.70) z. =sinh -1 (q Ja) log(qJ ja +' 1+q 2j-a3

3
If f is analytic in Z d the corresponding function 1;

is defined by

(1 + sinh 2
(2.71) ~(Z) = 4 sinh f)

The condition (2.49) becomes

1

(2.72) = liml,- 3 1 r(z)I lp 12 cosh K4 2 Idzj)p < 00,
T-1- + TTul a (-) 1+sinh zj

where

3S

Td() [ E C: jarg sinh(Z-.r)l < d),
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r

and the following condition is equivalent to (2.50):

(2.73) f(z) I AjZj e- 3Z , 3

The difference. , between f and the rational function

becomes

(2.74) I(x) = f(x)

j- f (z.)4F~q 2 (j-a)
sinh x N l1+qJ f ) 2 j

- l+sinh x j=-M+2a j-a (sinh x-z.)18' (z.)q I

Either Thm. 2.2a or Thm 2.2b may now be stated to

bound J(x) on [O,w].

2.5 Rational Approximation on [-o, ] Via a Rational Function

x
of e

4The region Z of analyticity is the strip zd defined

in Eq. (2.5). The function c and , become

z

(2.75) l(z) - eol -I -.) = iogig _.

The product M(z) now takes the form

(2.76) (z) = N e- -
Sj=-M+2a e +q

i.e. the points z. are given byJ

(2.77) z. = (j-a) log q.)



33

4
Let f be analytic in d Then the corresponding function

y of (2.47) is defined by

z 2
(2.78) (z) (l+e f(z).4e z 0

The condition (2.49) now becomes

(2.79) =li rl , I(z) IPi 2: z  dz1 /p 00, P>T-d(l+ez)21dl ,p>I

The following condition is equivalent to (2.50):

4
A exp(a Re z) , z C 2d' Re z 0

(2.80) If(z)I < 4
A exp(-O Re z), z C Md' Re z > 0.

The difference between f and the rational function now

becomes

N (l+qj) f (z
(2.81) J(x) = f(x) -- (x) E.

j=-M+2a (ex - 51 'I (zj)

We may now bound J(z) on (-oo) via either Thm. 2.2a or Thm.

2.2b.

.S
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3. IMPLICATIONS AND APPLICATIONS.

In this section we study the connection of the results

of the previous section with the Thiele algorithm, the

epsilon algorithm, and the Pade method.

3.1 The Thiele Algorithm.

The Thiele, or algorithm for interpolating f

at m 4 1 distinct points x0,xl,. .. ,x is described as follows.

Define p by

1
= f(xj) j =
0J

<~ . x -x
(3.1 P i- 1j+1 1(3. I)l J Xj+l-X j = 01,.. .,m-l
• 1 = j+l j ""

PO -PO

j i+1-i j+l j = 0,1....,m-(
i - j+l j + Pi-2 i = 2,3,...,m.

Pi-l-Pi-l

Then the rational function r(x) which interpolates the data

(x, f(xj )) is given by the continued fraction representation
-j=0 XiX

0 x 0  i _+.

(3.2) r(x) = p0 +r- 0 + 0 0 0 0
Pi- 0 m -m-2

The function r(x) has the form

p (x)
(3.3) r(x) = q nW )
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if m = 2n, where pn and q are polynomials of degree n in

x, and it has the form

Pn+l (x)
(3.4) r(x) - *n 1q* (x)

n

if m = 2n + 1. Furthermore, if m = 2n, then

0 n n-iP2nx + cIx  +..+ c

6(3.5) r(x) n-"n n-i
x + d x +...+ dn1 n

That is

0
(3.6) P2n = lim r(x),

so that the Thiele algorithm provides an excellent method of

carrying out analytic continuation.

For example, if f is analytic and bounded in the

2
region Z of Eq. (2.3) and if f is of class Lip (a > 0)d a

[x0 ,]oo, where x0 > 0, then we may effectively use the

Thiele algorithm to evaluate f(w) via the use of a few

values of f(x)) for finite x. Indeed, this has been done

recently in an ultrasonic tomography algorithm [19].

3.2. Evaluation of the Rationals of the previous Section

via the Thiele Algorithm.

Let P denote the family of polynomials of degree n,n

I"1

-Il- U m~m ll mammeu . m um =-



and consider the evaluation of the rational function

p (x)
(3.7) r(x) n

qn+a (x)

for p e P e P where = 0 or 1, and such that
n n' , n+ar

(r(x2k) = f(x2k), k = 0,1,... ,n
(3.8)2k2

Sr(x 2 ~) = CO , k = 1,2,... ,n+.

Then

(3.9) p(x) -
r(x)

can be evaluated via the Thiele algorithm, using the

2n + 1 + a values p(xk) = l/r(xk), k = 0,1,...,2n + 1 + a.

Eq. (3.9) then yields r(x) = i/p(X). In general, there seems

to be no guarantee that the p algorithm will always work;

however, interlacing the zero and non-zero values of p

in the above fashion has worked, in our experience. Since

all of the poles of r(x) have been pre-determined, there

are no unwanted poles.

Let us next consider the evaluation of the rational

function in (2.10) for the case when a = 0, i.e.,

6i
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2

r(x) 
N  (1-x )B(x)f(B) 

N X-

__N 2 ; B(x) = [-N l- jxj=N (x-Cj) (1-Cj)B' (rj)

(3. 10)

j
q

Since 0= 0, B(x) = +(x)/q(x), where

P P q e P2N"Hence r(x) = P (x)/q2W
~2NI-1C 2N+l' 2f4 S 2N' N2 2

and it has (1-x ) as a factor. Hence

l-x2 p2N (x)
(3.11) p(x) r(x) q 2 N(X)' P2N q2N P2N )

is completely determined by the 4N + 1 values

2

(X2 k'P(x 2 k)) = (C-N+k' ), k = 0,1,...,2N
f ( -N+k )

(i/CN+k-l,0) ,  k = 1,2,...,N

(X 2 k- l ' p (x2k- i) =

(i/CN+k , 0 ) ,  k = N+ ,. .. N

and may thus be evaluated via the Thiele algorithn as above.

The rational function r(x) may then be computed via (3.11),

i.e.

l-x
2

r(x) (p(x)"

-. - -- ~-. A..-* . . . - - *.
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3.3. The G-Algorithm and the pade Approximation.

The C-algorithm [15], [23] is described as follows.

Given a sequence of m + 1 numbers S. (j = 0,1...,m),J
J b

define by

.- C0  - Sj , - 0,1,..., mI

(3.12) 0,1,. 3..,m-

1 j+l j = 0,1,... ,m-'Jj+l j i-1 i= 2,3,...,m.

The numbers £ may be used to either predict the limiting

value of a function, or to evaluate Pade approximations [24J.

For example, if
~kx k-

(3.13) S(x) = L + k=0 e k E=0 dkx9,

if

Sj = S(j),

and if

(3.14)4y (3.14) M = 0

M ''=O "

then

4 0
6 (3.15) = L.

U i
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On the other hand, if S. is defined by

3I
(3.16) Sj = 7J ) C~

j10 i

then e n yields a Pade' approximation [.-] i.e.,

n Pm+k- 1 (ii)(3. 17) 2 qk )  "
C2k ~(1

The results of Sec. 2 of this paper together with the 9

representations (3.13) or (3.16) tell us when we may expect

the approximations (3.15) or (3.17) to be accurate, when

applied to a function f.

For example, if f(x) - L (L = f(-)) satisfies any of

the conditions in sections 2.4 or 2.5, then by taking

S. = f(jk), we see from (3.13) and (3.15) that Cm will

converge rapidly to L = f(o).

The representation (3.16) may be considered to be an

interpolation of an analytic function f(z), where

(3.18) f(jk) - S - Ckxk

This representation then shows that f(z) - L (L = f(o)) may

be assumed to satisfy any of the conditions of Secs. 2.4 or

2.5, provided -C.

(3.19) Ik- -- 'k > 0.

Hence in the case when (3.19) is satisfied, we may expect

(3.17) to converge rapidly to f(-) = £ kx as n - c.
Z%=O~kx
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4. A LOWER BOUND ON THE ERROR OF BEST APPROXIMATION.

Let U denote the unit disc in the complex plane, i.e.

z/2 in the notation of Eq. (2.1). That is

(4.1) U = C: I < 1).

Let f satisfy the conditions of Thm. 2.la. Then F

defined by (2.6) is in H (U), that is, F is analytic in
p

U, and

(4.2) = lirn I I F (re' ) Pd9) 1/p < 0.
r- I 0

Let S denote the family of all such functions F such

that !IFJ! 1. Then, by Anderssen [1] we have

2N1/,i P2N(

(4.3) C1 expf-.(-.N) 1/2) inf supi [F()- ]dl
2N' 2N+l FeS -i 2N+l P

where p' = p/(p-l) and where C1 is a positive constant de-

pending only on p, and p2N and q2N+l denote polynomials of

degree 2N and 2N + 1 respectively.

Now if i( ) is defined by (2.10) then the terms in

square brackets on the right hand side of (4.3) is just

2ri( )/(1- ). Hence

(4.4) C1 exp(,-r( T / 1 dN 1/2
p J 2
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We now split the integral on the right hand side into

an integral over (-8,8), 8 > 0 plus an integral over

I [-1,1] - (-8,8).

Then

(4.5) I d I< max 2 :1 l-1- a
22-(4.T) (F2 di! Q a L~)J (1-x )dx

I-t2i~ * 1+5,' l

.2 log(

while from (2.19) we have

ri~i 2 /
(4.6) d ; c 1 -l/p d

r-,'
2C 2 \

= C2p;(- 8 ) 
p

where C2 is a constant depending on on p.

Hence, by (4.4), (4.5) and (4.6), we get

(4.7) iflIIi _2> 1 _ N 1/2 1/p

2 1+ ep-( I ) ) - 2p' (1-8)
2 1 ogy -1

-N
Taking 1 - 8 = e , and combining with Thm. 2.la we find

that there exists an N 0 0 such that if N > No, then

there are constants C3 and C4 such that
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C N -  exp[-r ( 2

3 p

P2N+2 ( F )

(4.8) inf sup sup q f ( 2N+)  IP2N+2, q2N+ 1 FES -i< <i q2N+l ( )

C4l/(2p' N x[. (T, 1/2]

These inequalities show that while the exact lower bound

on the left hand side of (4.8) is not known, the results of

this paper are in the right "ballpark" with respect to their

accuracy.

We therefore conclude with a problem: Given f

analytic in U, F e H p(U), where F(z) = f(z)/(l-z ),

and given N, can a rational ctp oroX('W 1lo p/q of

f on [-1,1] which is linear in F be as accurate as the

best rational approximation to f of the form p/qN? Here

P and q are polynomials of degree at most N.

N N
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Appendix A. BlAS=HKE PRODUCT ESTIMATES.

We shall see in what follows that the four rational

approximation results referred to at the outset of Sec. 1

are simply related via elementary conformal transformations.

For example, once we have a rational function approximation

in w over [-l.l] we can readily obtain one in z over

(O,c) via the transformation

z-l1 l+w(A.1) w -1 z -+W)
z+l 1-w

which is a conformal map of the right half plane onto the

unit disc, and which transforms pn+1 (w)/qn (w) into a rational

function P n+l(z)/Q n+l(z). Similarly, starting with a

rational function of z for approximation over [0,o] we

can use the second equation in (A.1) to get a rational

approximation in w over [-1,1].

It is most convenient from the point of view of using

known results for Jacobi theta functions to first consider

approximation over [O,o]. For purposes of interpolation

at the points qJ, j = -N,..,N, 0 < q < 1 it is natural to

start with the product

NN ZAj..(__Z) = ._ .,0 < z < .
N- - j=-N z+qj

Unfortunately this product does not have a limit as N - o, since

the product changes sign with N as N increases. However

the alternate form
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z-iN 1 - J(z+l/z) + 2j

S ( z ) - j= jl 2j1 + q (z+l/z) + q

has the same zeros and poles as N, and moreover, the product p

converges as N . Let us set
- 1 j 2j

z-I C - (z+l/z) + j
(A.3) (z,q) - + j=1 1 + qJ(z+l/z) + q2jp

and let us define m(q) by

tA.4) m(q) = sup JO(z,q)j.
O<z< O

Next, let us use the standard notation for elliptic

functions, for 0 < k < 1,

rdt
u U (k) = _ w = sn(u;k)0 (1-t 2 (1-k t 2

cn(u;k) = 1-sn (u;k), -K < u < K

K = K(k) = u(1)

(A. l- )k

= j 1-k

K' = K(k

q = exp[-7 K'/K]

q= exp[-r K/K'1.

We then prove

Lemma A.l: If m(q) is defined by (A.5). then

2 1l/2
(A..) m(q2 ) k /
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Proof: Let us introduce the Jacobi theta functions L91J

() 16 c 1/6 2j 4
93 =k2k 2 s in v noo 1 (1-2q coszv+q4~)

(A.7) = v

9c(u) l6 k, 11  * 1 +2q2  cos 2v+q4)

Then, by (A..3) and (A.7) we have

2iv 2 1/2 9 s(u)
(A.8) I(e ,q ) ik1  A (u),

Now, using Eqs. (16.36.3) and (16.3.3) of [91 we have

2iv 2 1/2 sn(u~k)(A.9) (e ,q )=ik 1  cn(u;k)'

However, we are interested in bounding iz,q) on the

interval 0 z < w. This means that we want to find the

maximum value of 2i( q)I for - oo v j . However,

by Eqs. (16.20.1) and (16.20.2) of [91 we have

(A.10) sn-uk isn(u,-k1

But for u real

(A.11) max Isn(u,-k )I =1

so that
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(A. 12) max I(e 2 V q k.
-0oo V. oo

This completes the proof of Lemma 2.1.

We also introduce the rational function

(N -qj- 1/2 (z+l/z) + C2j-1(A.N13) 'YN(z) N _ __-i/2 2j-1
N 1 l+qj (z+l/z) + q

for 2N - point rational approximation at the points

+ (j-1/2)
" q-- ~~, j =12 .. N

Letting N - , we set

1 -r j-1/2 (z+I/z) + CT2j-1,.(A.14) i(z,q) = j=1 +j-/2(/) + 2j-1

I= + q~ 1 (z+l/z) +

and

(A.15) n(q) = sup I T (z,q)j.
O<Z<o

We then prove

Lemma A.2: If n(q) is defined by (A.15), then

(A.16) n(q ) = 2
1*

Proof: In this case we use the theta functions

2k2

ed(u) = - 1 )1 / 1 2 "1 (1 + 2q2 j  cos 2v + q 2j

(A. 17)
k2  1/12 2j- 2j-

(u) = (..4) (1 - 2q2 j c-  s 2v + -16qk14j=l
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and proceed similarly as the proof of Lemma 2.1, using

equations in [9].

Lemma A.3: Let k, and q be defined as in s.,-).

Then

1 /2 2

(A-18) k, 2 expf- -T -.1
4 log-

q

Proof: The following series expansion taken from [8, p. 378]

converges for 0i k 1 < 1:

1/4 1K~/2[ 2S2 k 4 k 6(A.19) q = + 2 (k) + 15(k) + 150(-) +...]-
44 4

Since all of the terms of the series in square brackets are

positive, (4.19) taken together with (A.S) implies that

(A.20) 1/2 21/2

Since, however, the last two equations in (A.S) yield

(A.21) (log 1)(log i) = 2
ql

we find, after substituting this result into (A.20) and

using the fact that 0 < q < 1, 0 < ql < 1, we obtain (A.18).

Lemma A.4: The functions of (A.4) and of (A.14) satisfy

2
(A.22) sup 1§(zq)j 1 2 expf- - -

0<z<o 2 log
q
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(A.23) sup 'Iy (z, q)~ 2 expf- 2T
0<Z<o 2 log-

q

Proof: As a consequence of Lemmas A.1, A.2 and A.3, both

2 2
functions (z,q )and 'y(z,q )are bounded on [0.-] by

2 12
2 exp[-i /(4 log -f. Hence, replacing q by q we get

q

(A.22) and (A.23).

We remark that while we used elliptic functions to

derive (A.22) and (A.23) these inequalities do not involve

elliptic functions.

lemma A.5: Let a b~e either 0 or 1/2. (a) Tf

IZ qNl/- and if

]-a
(A.24) t N == lzq -

.then

2 N+l/2-a

4 log -
q

(b) if 0 < lz! ql 2 + and if

(A.26)l -lM j-+C
im z - q

then

4 log-

q
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Proof: The proof of (A.27) is almost identical to the proof

of (A.25), and hence we shall only prove (A.25). We have

2 J0 2n+l
loglt~t = Re n=O 2n+l 'j=N+1 z

00 2 0 q 2n+l

(A.28) E n=O 2n+l Zj=N+I ( I z )

(.00 282nl
SZn=0 2n+l EJ=N+l (  2

N+I/2-a n+1/2
= 00 2 .~____2n+l c
n=O .n+l )2 2n+l"

l-q

But

n+1/2
(A.29) - 1 1

2n+1 1 1l-q 2 sinh[(n-I)log q] (2n+l)log -

+2 q q

Hence

n+1/2- ol N+1/2- v- 2S2n=0

log q (2n+l) log q

This is just the logarithmic form of (A.25).

Lemma A.6: Let Izl > 0, - < e < r, and let z = fzle

Then

0(A.31) 1 lgz+tld ( 9)~~*1 Z og-~t 2- l)

Proof: Splitting the integral as an integral from 0 to

z plus an integral from 1zi to we have
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(A. 3) Re i log z+tdt =Re00.,Izl 1 E 0 2 t 2n+i dt
(A.32 Rej0t z-t t n=0 2n+l( z

00 2 -(2n+l)ie = 2
Re 2 e =n=0 2 cos(2n+l)9.nO (2n+l) (2n+l)

Similarly,

(A.33) Re -log t+zdt n - 2 cos(2n.1)9.
l ogt - n=0 o(2n+l)e

Hence

"" 1 'z+tld 2 2
(A.34) 0 loglz-dt 2 E n 2 cos(2n+l)

0 (2n+l)

from Fourier series.

Corollary A.7: If z satisfies the conditions of Lemma

A.& and if 9 = (t: t = pei , p fixed, 0 p cc, then

2f ,_Z z+t _
(A.35) lo zt

Proof: The proof is similar to the proof of Lemma A.5, by

proceeding along the lines of equations (A.31) to (A.3,9),

dropping the real parts, and replacing t by p and

z by Izj.

Lemma A.8: Let 0 < II < N, let z = Izlei and define

e(9,q) by

I
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-p exp (2. (.- !)

log log --

q q

If a is either 0 or 1/2, then

1 00 z___+_

a(A.37) I '- let) - log q jlog I 'z O <  (9,q).

Proof: Without loss of generality, let us fix 3 in the

range 0 < 9 < (. The function

1 z + tg(A.38) f(t) =+ log
t z - tq0

is then an analytic function of t in the sector

(A- < arg t < 9, it is absolutely integrable along any

ray t = itt ei  0 jtl , B - ' i e , and moreover
for t in this sector of analyticity, f(t) = 0(i) as t h 0,

-2
f(t) = O(t ) as t - . Hence if we can apply Thin. 4.3

of 171], Lemma A.& and Corollary A.7 to get the result J.36)

for 0 < <i. The proof for the casewhen - <3<0

is similar.

Corollary A. 9: If z = iziei , where 0 < t~it < n, if e( ,q),

is defined (A.3) and if a is either 0 or 1/2, then

< ar ,i saslteyitgal ln n

ra4 T cpadmroe
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e '-I ) t ( e 'q )  z j +

(A .39 ) exp ( 21 I .- = o

log q z-q

q
Theorem A.10: Let z = let (e,q) be definedb_

(A.36) and let a be either 0 or 1/2.

(i) Lf 0 < Ie then*

(A.N40) z+q . exp 21
( z-qJ- 

log q

(ii) If T/2 < lei < T
, let and be selected such

that

N+1/2 a - (M+I/2-a)(A.41) q < q

if Izi lisn th _ r z c . , then

1
2 N+ -c M+_--- N +J-a IT (2- I +c Cq) '-L-4 (q /g+q :

(A.42) N z< expe 4 2

z-q j=-M+2c z-q log q
* q

(iii) If = T, and z lies in the range r z ;,

where and satisfy (2.41), then

*If 191 = ,the left-hand side of (A.40) is identically 1.
2'
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2 4

z-q(. 4 2 exp[o1

j=M+2a' ]_a
z-qlogq

q

or equivalently, if z i , then
1 1

2 2 N+-+Nz j e_ _ ( q 2 / E + q ' )

(A.44) j=M+2a I 2 exp( 2 41 q"

z+q3-  log00

Proof: (i) We have

(A.45) N z+J- z-CJ-j=-M+2a zqJ-al Ii I zj=-oIilqj- I"j<-M+2a,j>N j-a"z-q zq z+q3-

However since 181 = jarg zj r/2 each term (z-q J-)/(z+qj- a)

of the product on the right hand side of (4.45) is at most

1 in magnitude. Hence (A.40) then follows from (A.39).

(ii) This is also a consequence of (A.45), (A.39),

and Lemma A.5.

(iii) Both JO(z,q)l (by taking a = 0) and jiy(z,q)j

(by taking c = 1/2) are expressible by means of the infinite

produc - j1 -a
product rj_:. (z+q-)/(z-q )I. Hence the inequalities

(A.43) and (A.44) follow from Lemmas A.4 and A.5.
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Appendix B: CONTOUR INTEGRAL ESTIMATES.

The hypergeometric function

(B.1) F(a,b;c;z) = (a) I (b n IZ < I.
n=Q (c) n. z

may also be expressed via the following integrals provided

* thatc >b > 01

r(b) r(c-b)F~bcz
*( c)

(B.2) r t b (l.-t) -- (l-zt)- dt

(B.3) -1 inb 2c-2b-1 .2 -ad

(B3 i be Cos 9(1-z sne) r
0

r /2 2b-l 2c-2b-1 2 -a
(B.4) =2 k Cos 8 sin 9(l-z Cos 9) de

r 00b-l ,ua-cfl ,_)-a
(B.5) I u (--) [~~-) du.

%jo

If also c - b - a > 0, then

(B.6) F(a.b;cl) - r~c) -(ca-b)
r(c-a)r(c-b)*

other identities involving the function F(a.b~c;z)

(B7) Fa~~2;4z 2a 1 1 2
(B.7) F~~b,-2b,= (1+iz) F (a, a-b-2b+- ;z

(l+z)2 2

4f'~ p. 50]
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c-a-b
(B. 8) F(a,bc;z) =(l-z) F(c-a;c-b;c~z)

[rq, p. 471

= r (cc)-r (c-a-b ) F a b a -c 1 1 z
(B.9) F(a,b;c;z) rcb

+ 1-)c-a-b r(c)r(a+bc) F(c.acbc-a-.b+1;1..z)
+ (l-z)r(a)r(b)

[ p. 47]

-a r(ch-(b-a)F 1-babl;--(B.10) F(a,b;c~z) =(1-Z) F~~rc a, c-1-bl---

ra r(b)r-) 1- z

+ ~ (JZ (1z f F F(b,c-a;-a1-
'1-z

f8, p. 48]-

some gamma function identies will also be convenient:

1 1/2 1-2z
(B.13) r(z)r(z + 2) = 2 r(2z)

(B.14 (Z)71-z) sin Trz

2 zr(2 Cos (rrz)

Let Tbe defined by (.'



The Integrals to be Estimated

We shall estimate the integral
2-ry

d

0 < d r/

for 1 < p' < l x 1, and 0 < d r/2, and we shall

estimate the integral

(B.1.) E(a',d ) -1 I-l I -' ®

for 0 < a < 1, 0 K < 1, -1 < x < 1, and 0 < d _T/2.

Theorem B.l: Le G(p',d,x) be defined by (B.16). Then

there exists a constant C depending only on p0 and d

I

(B.I )~suc that dx :1 I-l '-1l
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(B./8) G(p' ,d,x) C(l-x 2 ) I - p , 0 x < 1. I

Proof: Let us set

(B.9) G(x) G(p',

Then

|i 2r
(B.2c) G(x) = (1-2x cos 8 + 2 PA dq

2 p I .;/2 4x 2S=-(l+x)- [I -Cs]pi d 9
T 0 (l+x)2  d'

-p 2 '2 x 2 (by (B.4))

(1+x)

2( ' 2l
- 2 l2) (by (B.7))

(B.: ) - (-x 2)'PF(- 2',l.Y2..1.x2 ) (by (B.8))

2' 2

2 lI-p' r(p'-l)

r2 2

by (B.6) and the positive coefficient expansion (B.1) of

F(I-pZ ,1-p;/2 l;x2).

This proves (B./8) for the case when d =-/2.

We next consider the case of 0 < d < Tr/2.

The case 0 < d < r/2.

The region ZdL is now the intersection of the two discs

d

(2,2)* •The contour integral (B./t) is thus an integral
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over parts of two circles. If we replace the integrals

over these parts by the integrals over the whole circles,

we find that

(B.Z 3) G(p' ,d,x) x 2 d p'jdsj
2vj Icsc d

(B.2q) = 2(csc d) P IC-sin d +t d1- p ' d dj

(B., 5) = 2(csc d) -Pu G(sin d 2 +Ot 2d)-

(Compare (B./6), (B. )). The inequality (B.'6)

now follows by proceeding as in (B.20) - (B.ZZ).

Let H(a,5,d,x) be defined by (B.7), and let us set

i il : l-il_ i -i I: -l d
(B.Z6) H(x) = - JdIj-

2i8

Then, setting = e i , 0 < 3 r, we get

2 a+ 
- ./2 a-1 5-l 4x 2 -1/2(B.LZ) H(x) Cos esin ( -)sin

'JO (l-x)2

(B2) - ) (l-Fx22 )

by (B.3). Then (B.) yields

2aB e~)C) 1.5 3-a l+x 2
H(X) = r(l-x) (+t- ) F(22 2 -

(B.29) 2

(+x) -(22x)_ 2 ( F( a- l a-i l+x. 2
(l-rx(1) 2 2 2 '- )

r ...
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on the other hand, replacing sin by cos V in (B.27,'

and then using (B.4), we get

2a+132 ra_)______

H(x) 2 2(~x 2+-i Fia3t -x 2
____1x)2 2 1 +x
2

(B.30)

+ (i - 1 ~ (2 r 2 )Fa-4B-l f a+l. 1-x 2
Tr 1 2 '2' 2 ' i+x

Let us next transform (B.17) by means of the transfor-

mations

W-T, X u+i

to get

(B. 3Z) H(x) 2 (1u w al(i+w 2) (w 2+u 212d2 r

______ r(2 r 2 1t-3a
2 _ (l+(A) 22'2'3- 2

2

a 1.-a

+ 2 (1+A) U a1 2  2 F( a+a-1 a a±lu 2)

from (B. 2.9), and
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a+2-3 l rS)r
H(x) 2+u I 1( 3-22 -2

H r(X)l FC,~,u r --:2--)

(B. 33)

a 1-6
+2 2 _+S-i B +1 -2),+ u il~ ;

___ 2 2F 22 2
2

from (B.O).

The representation (B-3Z) is convenient on the interval

-l < x 0, while the representation (B.3 ) is convenient

on the interval 0 < x < 1.

l+x 2
Now if -1 < x _ 0, (-) 1; by inspection of the

power series of the hypergeometric function in (B.Z9) and

recalling that 0 < a < 1, 0 < 3< 1, we find that each takes
2 2

on its "gxfmum value if (1 + x) /(1 - x) = 1. Hence,

applying (B. ), we get

.i+a. 1a .2-a-B.
(2) (-- r (2r (-2 2c-2

(B. 34) H (x) _ i 2-aS- 3a-5B 1T2 2 2

(1-) t- Ia -a 2--a-5 2a+3-2

(2 ) ) (-)iF (- 1 )

if-l< xl 0
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a +B (-!3 )( 2-a-B 20+-2r c -) r O-y- r (2 2 a- 5
(B.3S) H (X) _
of(B.5) Hnx (B a+- 1 2-a 3-a-v

N '-2 Ik2

151+5 2-a-fA a+f3-2BH(I-x) N)r(r (l- 22 2 22
+ 2 2-a

I if 0 x < 1.

Hence, denoting by C the maximum of the right hand side

of (B.5#~) and (B..35) ,we have

a-i -

We now consider the case 0 < d < r/2. In this case,

we consider the integral obtained by using (B.3/) in

(B./7),

id
2(a+B3-i (l+u) a-i I-a-s -i,(B.31) H(afd'x)- 2,, 1w1l i+wl lw-u! Idwl.

Here, Iwi -ll+wl-- is a decreasing function of Iwl along

the path of integration, while lw-ul first increases to

II



62

-1
(u sin d) and then decreases again. Hence, since u sin d

is the distance from u + iO to the path of integration, we

have by rearrangement of the functions, that

(B.38) H(a,,dx) +u) w- [1+w2 2 [w 2+u 2sin 2d] 2dw

= 2H(u sin d) 1 + u1usin d

where the last identity was obtained using (B.3Z).

Theorem B.2: Let H(ab,d,x) be defined by (B./7), where

0 < a < 1, 0 < 8 < 1, 0 < d T ,/ 2 . Then there exists a

constant C dependin only on a-.5 and d. such that for

-i < x < 1,

a-1 5-1
(B.42) H(a, dx) C (l+x) (l-x)
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